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Part I

What is game theory?
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What is Game Theory?

• The mathematical theory of interaction between
self-interested agents (“players”).
• Self-interest: Players assumed to act in their own interests,

in pursuit of their preferences
• Focus on decision-making where each player’s decision

can influence the outcomes (and hence well-being) of
other players.
• Each player must consider how each other player will act in

order to make its optimal choice: hence strategic
considerations
• If all players have the same preferences, then game

theoretic analysis is essentially redundant: there is
common purpose.
• If a system has one designer, or is “owned” by a single

individual, we can usually assume common purpose.
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What is a “Game”?

• A “game” in the sense of game theory is an abstract model
of a particular scenario in which self-interested players
interact.
• Abstract in the sense that we only include detail relevant to

the decisions that players make:
leads to claims that game theoretic models are “toy”
aim is to isolate issues that are central to decision making.

• Game theory origins: study of parlor games (e.g., chess)
such games are useful for highlighting key concepts
but the term “game” conveys something trivial :-(
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Solution Concepts

• Key concern in game theory is to understand what the
outcomes of a game will be, under the assumption that
players act rationally (in their best interests).
• But it is often not clear what the best thing to do is.
• Solution concepts attempt to characterise rational

outcomes of games
• For every game, a solution concept identifies a subset of

the outcomes of the game – those that would occur if
players acted according to the corresponding model of
rational choice
• Problems . . . what happens if the solution concept says:

there is no rational outcome?
there are multiple rational outcomes?
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Interpreting Game Theory
Descriptive Interpretations

• Under a descriptive interpretation, we take game theory as
predicting how people will act in strategic settings, and
explaining why they acted the way they did.
• A major area of research to determine the extent to which

game theoretic solution concepts predict human choices
(somewhat controversial)
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Interpreting Game Theory
Binmore1 on when descriptive interpretations work

• In real life settings, social norms (and in particular, norms
of cooperation) often play a part in how people make
decisions. However, if the incentives are sufficiently large,
then these can override such norms.
• For incentives (such as payments) to influence behavior,

they must be adequate.
• For players to make rational choices, the game they are

playing must be sufficiently simple.
• Players will adapt their behavior over time towards more

rational outcomes, if they are given sufficient opportunity
for trial-and-error learning.

1Ken Binmore, Does Game Theory Work?, MIT Press, 2007.
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Interpreting Game Theory
Normative Interpretations

• Under a normative interpretation, we take game theory as
giving us advice: telling us what we ought to do in a
real-world situation.
• Whether the advice is useful depends on whether the

game model used was appropriate, and whether the
assumptions on which the model depends are satisfied.
(Typical assumptions: everybody knows everybody’s
preferences, actions, and their consequences, everybody
acts rationally,. . . )
• Game theory can be used to design interaction scenarios:

(mechanism design).
EXAMPLE 1. 3G spectrum auctions in 2000 yielded $35
billion for UK government.
EXAMPLE 2. “security games” paradigm (Milind Tambe)
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Non-Cooperative versus Cooperative Games

• Game theory is usually sub-divided into non-cooperative
and cooperative versions.
• Non-cooperative game theory is bigger and better-known:

it concerns settings where players must act alone. Solution
concepts in non-cooperative game theory relate to
individual action.
• Cooperative game theory is concerned with settings where

players can make binding agreements to work together,
allowing for teamwork, cooperation, joint action.
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Part II

Why is game theory relevant to
computer science?
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Mechanisms and Protocols

• Distributed systems research has focussed on protocols
(TCP/IP, leader election, bluetooth, . . . )
Typical issues: deadlock, mutual exclusion. . .
• In multi-agent systems, we study mechanisms.

mechanism = protocol + self interest

• Mechanisms take into account the fact that protocol
participants are not benevolent entities – they are
self-interested.

strategic considerations come to the fore.
• Treating mechanisms as if they were simply protocols

misses a big part of the story.
example: sniping on eBay
• In multi-agent systems, mechanism participants are

software agents.
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Two perspectives on game theory in computer
science

• Algorithmic mechanism design: take economic factors (in
particular: self interested behaviour) into consideration
when designing computational systems.
• Electronic market design: Use computer science

techniques in the design of economic systems.
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Computational issues for game theory

• Let Γ be a class of games. (It doesn’t matter exactly what
the games G ∈ Γ are.)
• Associated with Γ is a set Ω of outcomes.
• Where G ∈ Γ is a specific game, let ΩG denote the possible

outcomes of G.
• A solution concept σ for a class of games Γ with outcomes

Ω as a function:
σ : Γ→ 2Ω

such that σ(G) ⊆ ΩG.
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Computational issues for game theory

Non-emptiness: Given G ∈ Γ, is it the case that σ(G) 6= ∅?
Thus, non-emptiness simply asks whether the
game has any outcome that is rational according
to the solution concept σ.

Membership: Given G ∈ Γ and ω ∈ ΩG, is it the case that
ω ∈ σ(G)?
Asks whether a given outcome is rational
according to σ.

Computation: Given G ∈ Γ, output some ω such that
ω ∈ σ(G).
Here, we actually want to compute a rational
outcome of the game.
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Part III

Non-cooperative games
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Players and Outcomes

• Throughout this lecture, the set of players is denoted by
N = {1, . . . ,n}
• Assume Ω = {ω1, ω2, . . .} is the set of “outcomes”.

These are the consequences of player’s choices.
• Ω may be:

all the possible outcomes of a game of chess
the possible outcomes of negotiations between nations
the possible outcomes of an eBay auction
. . . and so on.

16 / 145



Preference Relations

A preference relation for player i ∈ N is a binary relation
�i ⊆ Ω× Ω, which is required to satisfy:

1 Reflexivity:
ω �i ω for all ω ∈ Ω

2 Totality:
for all ω, ω′ ∈ Ω we have either ω �i ω

′ or ω′ �i ω.
3 Transitivity:

for all ω, ω′, ω′′ ∈ Ω, if ω �i ω
′ and ω′ �i ω

′′ then ω �i ω
′′.
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Indifference and Strict Preference

Indifference:

If both ω �i ω
′ and ω′ �i ω then we say i is indifferent

between ω and ω′, and write

ω ∼i ω
′

Strict Preference:

If ω �i ω
′ but not ω′ �i ω then we say i strictly prefers ω

over ω′ and write
ω �i ω

′
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Interpeting Preferences (IMPORTANT)

• ω �i ω
′ means that:

if you have a choice between ω and ω′, you will always
choose ω
if you have two actions available, one of which will bring
about ω, the other of which will bring about ω′, you will
always perform ω

• Notice that preference is interpretated wrt your behaviour
• Player i ’s preference relation must capture everything

about the game that player i cares about.
For example if player i cares about other players, then this
is reflected in his preferences. (Many arguments in game
theory would be avoided if everybody understood this!)
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Utility functions

• It is useful to represent preference relations by attaching
numbers to outcomes: higher numbers are more preferred.
• The numbers are called utility values or utilities.
• A utility function ui : Ω→ R is said to represent player i ’s

preference relation �i iff we have:

ui(ω) ≥ ui(ω
′) iff ω �i ω

′

ui(ω) > ui(ω
′) iff ω �i ω

′

Theorem
For every preference relation �i ⊆ Ω× Ω there is a utility
function ui : Ω→ R that represents �i .
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What is Utility?

• We use (numeric) utility values because it allows us to use
numeric techniques for solving games.
• Utilities are selected simply to represent preference

relations �i .
• It is a fallacy to claim you choose ω over ω′ because

ui(ω) > ui(ω
′) – you make this choice because ω �i ω

′.
The ui values were chosen to reflect this.
• But, if we picked the numbers right, then you behave as

though you were maximising utility.
• Utility values don’t represent intensity: they are ordinal

values, which indicate relative rankings.
• Interpersonal comparisons of utility are difficult. “One util”

for me is not the same as “one util” for you.
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Utility is not money!

• Much misunderstanding caused by people interpreting
utility as money, leading to the implication that game theory
is about “greed”. . .
• Utility as money is often a useful analogy.
• For the record, a typical relationship between utility &

money:
utility

money
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Game Forms

• We now introduce our first game model.
• Players simultaneously choose a strategy, and as a result

of the combination of strategies selected, an outcome in Ω
will result;
• Player i ’s strategies given in a set Σi , with members σi etc.
• Environment behaviour given by outcome function:

g : Σ1 × · · · × Σn → Ω

• A game form is a structure:

〈N,Ω,Σ1, . . . ,Σn,g〉
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An Example Game Form

• Suppose we have N = {1,2}, Ω = {ω1, . . . , ω4}, and
Σ1 = Σ2 = {C,D}. (Read the strategies as C = cooperate,
D = defect.)
• Here is an outcome function:

g(D,D) = ω1 g(D,C) = ω2 g(C,D) = ω3 g(C,C) = ω4

• This game form is sensitive to actions of both agents.
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Another Game Form

g(D,D) = ω1 g(D,C) = ω1 g(C,D) = ω1 g(C,C) = ω1

Neither agent has any influence in this environment.
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Yet Another Game Form

g(D,D) = ω1 g(D,C) = ω2 g(C,D) = ω1 g(C,C) = ω2

This environment is controlled by player 2.
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Adding preferences

• Suppose we have the first case, where both agents can
influence the outcome.
• Now suppose players have utility functions as follows:

u1(ω1) = 1 u1(ω2) = 1 u1(ω3) = 4 u1(ω4) = 4
u2(ω1) = 1 u2(ω2) = 4 u2(ω3) = 1 u2(ω4) = 4

• With a bit of abuse of notation:
u1(D,D) = 1 u1(D,C) = 1 u1(C,D) = 4 u1(C,C) = 4
u2(D,D) = 1 u2(D,C) = 4 u2(C,D) = 1 u2(C,C) = 4

• Sgent 1’s preferences are:

(C,C) ∼1 (C,D) �1 D,C ∼1 D,D
• Informally, “C” is the rational choice for 1. (Why?)
• In what follows, we drop the outcome function g and

assume utility functions are of the form:

ui : Σ1 × · · · × Σn → R
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Normal Form Games

A normal form game is a structure:

〈N,Σ1, . . . ,Σn,u1, . . . ,un〉

where:
• N = {1, . . . ,n} is the set players;
• Σi is a set of possible strategies for player i ∈ N;
• ui : Σ1 × · · · × Σn → R is the utility function for agent i ∈ N.

Notice that the utility i gets depends not on only her actions, but
on the actions of others, and similarly for other agents.
For i to find the best action involves deliberating about what
others will do, taking into account the fact that they will also try
to maximise their utility taking into account how i will act.
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Payoff Matrices

• We can summarise the previous normal form game in a
payoff matrix

1

2

defect coop
defect 1 4

1 1
coop 1 4

4 4

• Agent 1 is the column player.
• Agent 2 is the row player.
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Solution Concepts

• If players act rationally, what will the outcome of the game
be?
• Answered in solution concepts:

dominant strategy;
Nash equilibrium strategy;
Pareto optimal strategies;
strategies that maximise social welfare.

• A key concept to understand these is the notion of best
response.
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Strategy Profiles

• A strategy profile, ~σ, is a tuple of strategies, one for each
player:

~σ = (σ1, . . . , σn).

• Where ~σ is a strategy profile and σi ∈ Σi , we denote the
strategy profile obtained by replacing the i component with
σi by (~σ−i , σi).
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Dominant Strategies

• Strategy σi is dominant for player i if no matter what
strategies other players chooses, i will do at least as well
playing σi as it would doing anything else.
• To say that σi is a dominant strategy for i is to say that σi is

a best response to all of its counterpart strategies
• A dominant strategy equilibrium is a strategy profile in

which every player chooses a dominant strategy.
• A strong solution concept. . . but unfortunately, there isn’t

always a dominant strategy.
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(Pure Strategy) Nash Equilibrium

• A strategy profile ~σ is a Nash equilibrium if no player would
rather have done something else, assuming the other
players stuck with their strategies.
• Formally, ~σ is a NE if there is no player i ∈ N and strategy
σ′i ∈ Σi such that

ui(~σ−i , σ
′
i ) > ui(~σ).

• Nobody can benefit by deviating from a Nash equilibrium.
• Unfortunately:

1 Not every game has a (pure) NE.
2 Some games have more than one NE (equilibrium selection

problem)
3 Some NE are bad!
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The Matching Pennies Game

• Players 1 and 2 simultaneously choose the face of a coin,
either “heads” or “tails”.
• If they show the same face, then 1 wins, while if they show

different faces, then 2 wins.
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Matching Pennies: The Payoff Matrix

1 heads 1 tails

2 heads
1

−1
−1

1

2 tails
−1

1
1

−1
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Mixed Strategies for Matching Pennies

• No pair of strategies forms a pure NE in matching pennies:
whatever pair of strategies is chosen, somebody wishes
they had done something else.
• The solution is to allow mixed strategies:

play “heads” with probability 0.5
play “tails” with probability 0.5.

• If both players do this, we have a NE strategy profile.
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Mixed Strategies

A mixed strategy has the form

play σ1 with probability p1
play σ2 with probability p2
· · ·
play σk with probability pk .

which must satisfy the probability constraint:

p1 + p2 + · · ·+ pk = 1.
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Nash’s Theorem

Theorem
Every finite game has a Nash equilibrium in mixed strategies.

• Guarantees the existence of NE.
• But there may be more than one Nash equilibrium. . . the

equilibrium selection problem.
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Pareto Optimality

• An outcome is said to be Pareto optimal (or Pareto
efficient) if there is no other outcome that makes one agent
better off without making another agent worse off.
• If an outcome is Pareto optimal, then at least one agent will

be reluctant to move away from it (because this agent will
be worse off).
• If an outcome ω is not Pareto optimal, then there is another

outcome ω′ that makes everyone as happy, if not happier,
than ω.
“Reasonable” agents would agree to move to ω′ in this
case. (Even if I don’t directly benefit from ω′, you can
benefit without me suffering.)
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Social Welfare

• The social welfare of an outcome ω is the sum of the
utilities that each agent gets from ω:∑

i∈N

ui(ω)

• Think of it as the “total amount of money in the system”.
• As a solution concept, may be appropriate when the whole

system (all agents) has a single owner (then overall benefit
of the system is important, not individuals).
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Competitive and Zero-Sum Interactions

• Where preferences of agents are diametrically opposed we
have strictly competitive scenarios.
• Zero-sum encounters are those where utilities sum to zero:∑

i∈N

ui(ω) = 0 for all ω ∈ Ω.

• Zero sum encounters are bad news: for me to get +ve
utility you have to get negative utility! The best outcome for
me is the worst for you!
• Zero sum encounters in real life are very rare . . . but

people frequently act as if they were in a zero sum game.
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The Prisoner’s Dilemma Game

‘ ‘Two men are collectively charged with a crime and held in
separate cells, with no way of meeting or communicating.
They are told that:

• if one confesses and the other does not, the confessor will
be freed, and the other will be jailed for three years;
• if both confess, then each will be jailed for two years.

Both prisoners know that if neither confesses, then they will
each be jailed for one year.”

42 / 145



Payoff matrix for the Prisoner’s Dilemma

1

2

defect coop
defect −2 −3

−2 0
coop 0 −1

−3 −1

• Top left: If both defect, then both get punishment for mutual
defection: two years in jail.
• Top right: If 1 cooperates and 2 defects, 1 gets sucker’s

payoff (3 yrs jail) while 2 goes free.
• Bottom left: If 2 cooperates and 1 defects, 2 gets sucker’s

payoff, 1 goes free.
• Bottom right: Reward for mutual cooperation, 1 year in jail.
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What Should You Do?

• Mutual defection (2 years in jail each) is a dominant
strategy equilibrium:

Suppose he defects: my best response is to defect.
Suppose he cooperates: my best response is to defect.

• But intuition says this is not the best outcome:
Surely they should both cooperate – then they
only serve 1 year in jail!

44 / 145



Solution Concepts

• (D,D) is a dominant strategy equilibrium.
• (D,D) is the only Nash equilibrium.
• All outcomes except (D,D) are Pareto optimal.
• (C,C) maximises social welfare.
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The Dilemma!

• This apparent paradox has been described as “a
fundamental problem of multi-agent interactions”.
• Real world examples:

nuclear arms reduction (“why don’t I keep mine. . . ”)
free rider systems — public transport;
in the UK — television licenses.

• The prisoner’s dilemma is ubiquitous.
• Can we recover cooperation?
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Arguments for Recovering Cooperation

• Conclusions that some have drawn from this analysis:

the game theory notion of rational action is wrong!
somehow the dilemma is being formulated wrongly

• Arguments to recover cooperation:

We are not all machiavelli!
The other prisoner is my twin!
Program equilibria and mediators
The shadow of the future. . .
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The Iterated Prisoner’s Dilemma

• One answer: play the game more than once.
• If you know you will be meeting your opponent again, then

perhaps the incentive to defect evaporates. . . ?
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Finitely Repeated Prisoner’s Dilemma
Backwards Induction

• But. . . suppose you both know that you will play the game
exactly n times.
• What should you do? Imagine yourself playing the final

round.
• On round n, you have an incentive to defect, to gain that

extra bit of payoff. . .
• But this makes round n − 1 the last “real” round. . . but you

have an incentive to defect there, too.
• This analysis technique is known as backwards induction.

Theorem
Playing the iterated Prisoner’s Dilemma with a fixed, finite,
pre-determined, commonly known number of rounds, mutual
defection at every step is a dominant strategy equilibrium.
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Infinitely Repeated Games

• Suppose you play the game an infinite number of rounds?
• Two issues:

How to measure utility over infinite plays?
Summing utilities doesn’t work – sums to infinity.
How to model strategies for infinite plays?
Strategies are not just “C” or “D”
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Utility functions for infinite runs

• Common approach: use a discount factor, 0 < δ ≤ 1, to
discount the value of future rounds – gives a finite value to
infinite sum
• The value of the infinite run

ω0 ω1 ω2 ω3 · · · ωk · · ·

to player i is then ∑
k∈N

δkui(ωk )

• Alternative: compute average over all rounds.
If players use automata strategies this is easy!
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Strategies for infinite plays
Strategies as automata strategies

• We represent strategies as finite automata – technically,
Moore machines (“transducers”)
• Here is an automaton strategy called “ALLD”, which always

defects:

D

C

D

• Value inside a state is the action selected; outgoing arrows
are actions of counterpart.
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The ALLC strategy

C

C

D

Simply cooperates forever.
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The GRIM strategy

C D

C

D
D

C

I cooperate until you defect, at which point I flip to punishment
mode: I defect forever after.
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The TIT-FOR-TAT strategy
What does this strategy do?

C D

C

D
D

C
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Automata strategies playing against each other

Theorem
Finite machine strategies playing against each other will
eventually enter a finite repeating sequence of outcomes.

The average utility of an infinite run is then simply the average
utility over that finite repeating sequence.
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ALLC against ALLC

round: 0 1 2 3 4 · · ·
ALLC: C C C C C · · · average utility = −1
ALLC: C C C C C · · · average utility = −1

This is not a NE: either player would do better to choose
another strategy (e.g., ALLD)
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ALLC against ALLD

round: 0 1 2 3 4 · · ·
ALLC: C C C C C · · · average utility = −3
ALLD: D D D D D · · · average utility = 0

This is not a NE: ALLC would do better to choose another
strategy (e.g., ALLD)
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ALLD against ALLD

round: 0 1 2 3 4 · · ·
ALLD: D D D D D · · · average utility = −2
ALLD: D D D D D · · · average utility = −2

This is a NE (basically same as in one-shot case).
But it is not very desirable!
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GRIM against ALLD

round: 0 1 2 3 4 · · ·
GRIM: C D D D D · · · average utility = −2
ALLD: D D D D D · · · average utility = −2

Notice that GRIM tries to cooperate but then goes into
punishment mode: on average, it doesn’t do worse than if it had
been ALLD.
This is not a NE: ALLD can beneficially deviate, as next slide
shows.
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GRIM against GRIM

round: 0 1 2 3 4 · · ·
GRIM: C C C C C · · · average utility = −1
GRIM: C C C C C · · · average utility = −1

This is a NE! Rationally sustained cooperation.

The threat of punishment keeps players in line.
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Nash Folk Theorem

In a game G, let player i ’s reservation value be the best utility
that it can guarantee for itself, no matter what the other players
do (i.e., even if they “gang up on it”).

Theorem (Nash Folk Theorem)
In an infinitely repeated game, every outcome in which every
player gets at least their reservation value can be sustained as
a Nash equilibrium.

In the infinitely repeated Prisoner’s Dilemma, this means
mutual cooperation can be sustained as an equilibrium.

Proof: use GRIM strategies. If any player deviates from
required profile, other players punish him, ensuring he gets his
reservation value.
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Folk theorems for one shot games
Program Equilibria

• The strategy you really want to play in the prisoner’s
dilemma is:

I’ll cooperate if he will.
• Program equilibria2 provide one way of enabling this.
• Each agent submits a program strategy to a mediator

which jointly executes the strategies.
Crucially, strategies can be conditioned on the strategies of
the others.

2M. Tennenholtz, Program equilibrium, In Games & Economic Behaviour,
49(2), 1994.
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Program Equilibria

• Consider the following program:

IF HisProgram == ThisProgram THEN
DO(C);

ELSE
DO(D);

END-IF.

• “==” is string comparison: comparing program texts.
• (Compare this with GRIM in iterated games.)
• The best response to this program is to submit the same

program, giving an outcome of (C,C)!
• This is a program equilibrium.
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A Folk Theorem for Program Equilibria

Theorem (Tennenholtz)
In any one shot game, every outcome in which every player
gets at least their reservation value can be obtained as the
outcome of a program equilibrium.

For the Prisoner’s Dilemma, this means mutual cooperation can
be obtained as the outcome of a program equilibrium.
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Evolutionarily Games
Axelrod’s Tournament

• Suppose you play iterated prisoner’s dilemma against a
range of opponents . . .
What strategy should you choose, so as to maximise your
overall payoff?
• Axelrod (1984) investigated this problem, with a computer

tournament for programs playing the prisoner’s dilemma3.

3R. Axelrod, The Evolution of Cooperation, Basic Books, 1984.
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Some strategies from Axelrod’s Tournament

• ALLD:
“Always defect” — the hawk strategy;
• TIT-FOR-TAT:

1 On round u = 0, cooperate.
2 On round u > 0, do what your opponent did on round u − 1.

• TESTER:
On 1st round, defect. If the opponent retaliated, then play
TIT-FOR-TAT. Otherwise intersperse cooperation &
defection.
• JOSS:

As TIT-FOR-TAT, except periodically defect.

Of the 63 strategies entered, he found TIT-FOR-TAT did best.
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Recipes for Success in Axelrod’s Tournament

Axelrod suggests the following rules for succeeding in his
tournament:
• Don’t be envious:

Don’t play as if it were zero sum!
• Be nice:

Start by cooperating, and reciprocate cooperation.
• Retaliate appropriately:

Always punish defection immediately, but use “measured”
force — don’t overdo it.
• Don’t hold grudges:

Always reciprocate cooperation immediately.
Note that TIT-FOR-TAT does well because it gets to play
against other cooperative strategies: the “strategy population”
consisted of other cooperative strategies.
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Axelrod’s evolutionary tournament

• Axelrod then suggested interpreting performance in his
tournament as a measure of evolutionary fitness, and
repeated the tournament over hundreds of generations.
• Strategies with higher relative fitness increased their

presence in the strategy population compared to others.
• Notice that how well a strategy does depends on what

other strategies are present in the population.
• Just assuming evolutionary forces, what will a population of

strategies evolve to?
• Again, TIT-FOR-TAT did very well.
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Evolutionary dynamics in Axelrod’s Tournament

“The first thing that happens is that the lowest-ranking eleven
entries fall to half their initial size by the fifth generation while
the middle-ranking entries tend to hold their own and the
top-ranking entries gradually grow in size. By the fiftieth
generation, the [strategies] that ranked in the bottom third of the
tournament have virtually disappeared, while most of those the
middle third have started to shrink, and those in the top third
are continuing to grow. The process simulates survival of the
fittest. A [strategy] that is successful on average with the
current distribution of [strategies] in the population will become
an even larger proportion of the environment ... in the next
generation. At first, a rule that is successful with all sorts of
rules will proliferate, but later as the unsuccessful rules
disappear, success requires success with other successful
rules.” (Axelrod 1984)
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A solution concept for evolutionary games

• For Axelrod, the exciting thing was that TIT-FOR-TAT, and
mutually sustained cooperation, could arise merely through
blind evolutionary processes: cooperation through
evolution.
• A strategy σ is an evolutionary stable strategy (ESS) if it

will resist invasion by other strategies, assuming the
population is made up initially of σ4

4J. Maynard Smith, Evolution and the Theory of Games, Cambridge UP,
1981.
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Evolutionarily stable strategies (ESS)

Formally, strategy σ is an ESS iff:
1 It is a best response to itself.

(Otherwise, other strategies could “prey” on it.)
2 For any strategy σ′ that does as well against σ as σ does,
σ does better against σ′ than σ′ does against itself.
(So other strategies can’t benefit against σ by playing
against themselves.)

(TIT-FOR-TAT is not, in fact, an ESS.)
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Another Game
The Game of Chicken

1

2

defect coop
defect 1 2

1 4
coop 4 3

2 3

• Think of James Dean in Rebel without a Cause:
swerving = coop, driving straight = defect.
• Difference to prisoner’s dilemma:

Mutual defection is most feared outcome.

(Whereas sucker’s payoff is most feared in prisoner’s
dilemma.)
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Solution Concepts

• There is no dominant strategy.
• Strategy pairs (C,D) and (D,C) are pure NE.
• All outcomes except (D,D) are Pareto optimal.
• All outcomes except (D,D) maximise social welfare.
• An anti-coordination game: players should choose different

strategies.
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Yet Another Game
A Coordination Game

1

2

defect coop
defect 1 0

1 0
coop 0 1

0 1

• Here (C,C) and (D,D) are pure NE, but how do the
players independently choose which to select?
• A coordination game, because the problem faced by

players is how to coordinate.

75 / 145



Solving Coordination Games

1 Focal points:
Sometimes outcomes in games have features that make
them stand out, independently of the utility structure in
games5.
Example: Suppose we are visiting Paris for a day, and get
separated. Where do we meet up? In terms of utility, any
place would do, but likely to pick a “landmark”→ Eiffel
Tower.

2 Evolutionary approaches:
If we have time, we learn to coordinate (cf. ESS).

5T. C. Schelling, The Strategy of Conflict, Harvard UP, 1960
76 / 145



Other Symmetric 2× 2 Games

• Given the 4 possible outcomes of (symmetric)
cooperate/defect games, there are 24 possible orderings
on outcomes.

CC �i CD �i DC �i DD
Cooperation dominates.
DC �i DD �i CC �i CD
Deadlock. You will always do best by defecting.
DC �i CC �i DD �i CD
Prisoner’s dilemma.
DC �i CC �i CD �i DD
Chicken.
CC �i DC �i DD �i CD
Stag hunt.
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Extensive Form Games

• Normal form games abstract away much of the detail in the
structure of games, which usually involve taking moves in
turn, leading to an ultimate payoff for both players when
the game is over.
• Extensive form games explicitly capture this structure.
• In this lecture, we restrict ourselves to extensive form

games with perfect information (everybody knows exactly
what moves have been made previously) and no chance
moves.
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Game Trees

Extensive form games are usually modelled as game trees.
• A finite tree structure T
• The leaves of T are end games, and are labelled with

payoffs for each player.
• Interior nodes of T are labelled with the player who makes

a move at that point.
• Each edge leaving an interior node corresponds to a move

that can be made by that player.
• The player at the root of the tree moves first.
• A strategy for player i is a function that selects a move for

every interior node labelled with i .
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Example Game Tree

E

A

4, 1 0, 2

A

3, 1 1, 2

L R

l r rl

Two players: N = {E ,A}.
First player to move is E ; he can perform either L or R moves.
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Solving Extensive Form Games
Zermelo’s Algorithm

• Use backward induction to label every node with payoff
profile that would be achieved in equilibrium (dynamic
programming).
• Repeat the following:

If all the sub-children of an interior node have been labelled
with a payoff profile, then label that node with a payoff
profile from the children that maximises the payoff of the
player making a turn at that node.
(If there is a choice here, choose arbitrarily.)

until all interior nodes have been labelled with payoff
profiles.
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Illustrating Zermelo’s Algorithm

Recall our game:

E

A

4, 1 0, 2

A

3, 1 1, 2

L R

l r rl

To illustrate the algorithm, we delete parts of the game tree that
we have already “processed”.
Initially, start with A’s bottom left choice: given a choice
between 1 and 2, he will choose 2, i.e., move “r”.
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Illustrating Zermelo’s Algorithm

E

0, 2 A

3, 1 1, 2

L R

rl

Now consider A’s bottom right choice: given a choice between
1 and 2, he will choose 2, i.e., move “r”.
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Illustrating Zermelo’s Algorithm

E

0, 2 1, 2

L R

Now consider E ’s choice: he has a choice between 0 and 1 so
will choose 1.
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Illustrating Zermelo’s Algorithm

1, 2

So, player E receives 1 in equilibrium, while player A receives 2.
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Properties of Zermelo’s Algorithm

Theorem
Zermelo’s algorithm terminates, leaving the root labelled with a
payoff profile that would be obtained by a NE strategy profile.

The set of all such labelings is the set of all NE payoff profiles.

The algorithm runs in time polynomial in the size of the game
tree.
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Properties of extensive form games

Theorem
Every extensive form game (with perfect information and no
chance moves) has a NE in pure strategies.

Proof: Zermelo’s algorithm.

Theorem
Solving extensive form games is P-complete.
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Zermelo’s Algorithm in Computer Science

• One of the most phenomenally useful algorithms in
computer science.
• Classic example of dynamic programming.
• Same algorithm is used in:

CTL model checking6

Computing optimal policies in Markov decision processes
via “value iteration”7

6E. M. Clarke, O. Grumberg, and D. Peled. Model Checking, MIT Press,
1999. pages 35–39.

7M. L. Puterman, Markov Decision Processes, Wiley, 1994. pages
158–164.
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Computational considerations

• Issues of representation:
In a game with n players, where each player has m
strategies, there are mn possible outcomes: how do we
represent utility functions ui(· · · ) in this case?
• Complexity issues:

NE, PO, etc involve quantifying over strategies.
Checking whether a game has a pure NE is NP-hard, even
under very restrictive assumptions8

Checking whether a game has a mixed NE is
PPAD-complete9

8G. Gottlob, G. Greco, F. Scarcello. Pure Nash Equilibria: Hard and Easy
Games. In JAIR 24:357–406, 2005.

9C. Daskalakis, P. W. Goldberg and C. H. Papadimitriou. The Complexity
of Computing a Nash Equilibrium. In SIAM Journal on Computing
39(1):195-259, 2009.
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An example compact non-cooperative game
Boolean Games

A Boolean game consists of:
• N = {1, . . . ,n}

(the players)
• Φ = {p,q, . . .}

(a finite set of Boolean variables)
• Φi

(the set of variables under the control of i)
The assignments that i can make to Φi are the actions
available to i .
• γi

(goal of agent i – the specification for i – propositional logic
formula over Φ)
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Outcomes

• A choice for agent i is an assignment

vi : Φi → B

Agent i chooses a value for all its variables.
• An outcome is a collection of choices, one for each agent:

(v1, . . . , vn)
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Utility and Nash Equilibrium

The utility of outcome (v1, . . . , vn) to player i is:

ui(v1, . . . , vn) =

{
1 if (v1, . . . , vn) |= γi
0 otherwise.

We can then define NE in the standard way.
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An Example

Suppose:
Φ1 = {p}
Φ2 = {q, r}
γ1 = q
γ2 = q ∨ r

Then γ1 ∧ γ2 is satisfied in NE.
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Another Example
Matching pennies as a Boolean game

Suppose:
Φ1 = {p}
Φ2 = {q}
γ1 = p ↔ q
γ2 = ¬(p ↔ q)

There is no NE in this game.
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Complexity of Boolean Games

Theorem
It is co-NP-complete to check whether an outcome forms a NE
in a Boolean game.

It is Σp
2-complete to check whether a Boolean game has a NE.
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Part IV

Cooperative games
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Assumptions in Non-Cooperative Games

• Cooperation can’t occur in the prisoner’s dilemma because
the conditions required for cooperation are not present, in
particular:

binding agreements are not possible.

• But suppose we drop this assumptions?
• In the real world, the role of contracts is to enable binding

agreements.
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Coalitional Games

• Coalitional games model scenarios where:

agents can benefit by cooperating;
binding agreements are possible.
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Phases of Cooperative Action

• Issues in coalitional games (Sandholm et al, 1999):

Coalition structure generation.
Teamwork.
Dividing the benefits of cooperation.
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Coalition Structure Generation

• Deciding in principle who will work together.
• The basic question:

Which coalition should I join?

• The result: partitions agents into disjoint coalitions.
The overall partition is a coalition structure.
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Solving the optimization problem of each coalition

• Deciding how to work together.
• Solving the “joint problem” of a coalition.
• Finding how to maximise the utility of the coalition itself.
• Typically involves joint planning etc.
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Dividing the Benefits

• Deciding “who gets what” in the payoff.
• Coalition members cannot ignore each other’s

preferences, because members can defect: if you try to
give me a bad payoff, I can always walk away.
• We might want to consider issues such as fairness of the

distribution.
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Coalitional Games

A coalitional game is a pair:

G = 〈N, ν〉

where:
• N = {1, . . . ,n} is a set of players;
• ν : 2N → R is the characteristic function of the game.

Usual interpretation: if ν(C) = k , then coalition C can
cooperate in such a way they will obtain utility k , which may
then be distributed amongst team members.
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Which Coalition Should I Join?

• Most important question in coalitional games:

is a coalition stable?

that is,
is it rational for all members of coalition to stay with

the coalition, or could they benefit by defecting from it?
• (There is no point in me trying to join a coalition with you

unless you want to form one with me, and vice versa.)
• Stability is a necessary but not sufficient condition for

coalitions to form.
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Outcomes

• The core of a coalitional game is the set of feasible
distributions of payoff to members of a coalition that no
sub-coalition can reasonably object to.
• An outcome for a game 〈N, ν〉 is a vector of payoffs to

members of N, x = 〈x1, . . . , xn〉 which represents a feasible
distribution of payoff to members of N.
“Feasible” means:

ν(N) ≥
∑
i∈N

xi

• Example: if ν({1,2}) = 20, then possible outcomes are
〈20,0〉, 〈19,1〉, 〈18,2〉, . . ., 〈0,20〉.
(Actually there will be infinitely many!)
• An imputation is an outcome in which everybody is paid at

least what they could earn themselves (individual
rationality).
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Objections

• Intuitively, a coalition C objects to an outcome if there is
some outcome for them that makes all of them strictly
better off.
• Where x is an outcome and C ⊆ N, we let

xC =
∑
i∈C

xi

• Formally, C ⊆ N objects to an outcome x = 〈x1, . . . , xn〉 iff
ν(C) > xC .
• An outcome is not going to happen if a coalition objects to

it, because this coalition could do better by defecting.
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The Core

• The core, C of a game G = 〈N, ν〉 is the set of outcomes to
which no coalition objects:

C(〈N, ν〉) = {x | ∀C ⊆ N : xC ≥ ν(C)}.

• If the core is non-empty then the grand coalition is stable,
since nobody can benefit from defection.
• Thus, asking

is the grand coalition stable?

is the same as asking:

is the core non-empty?
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A game with an empty core

• Let G = 〈N, ν〉 be a game with G = {1,2,3} and

ν(C) =

{
1 if |C| ≥ 2
0 otherwise

• Then C(G) = ∅: any two players will always be able to
deviate and share some “surplus”.
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Problems with the Core

• Sometimes, the core is empty; what happens then?
• Sometimes it is non-empty but isn’t “fair”.

Suppose N = {1,2}, ν({1}) = 5, ν({2}) = 5,
ν({1,2}) = 20.
Then outcome 〈20,0〉 (i.e., agent 1 gets everything) is not
in the core, since the coalition {2} can object. (He can
work on his own and do better.)
However, outcome 〈15,5〉 is in the core: even though this
seems unfair to agent 2, this agent has no objection.
• Why unfair? Because the agents are identical!
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Fair Distribution: The Shapley Value

• The Shapley value is best known attempt to define how to
divide benefits of cooperation fairly.
• Payments based on how much an agent contributes.
• The Shapley value shi(G) of agent i in game G is the

average amount that i is expected to contribute to a
coalition.
• Axiomatically: a value which satisfies axioms:

efficiency, symmetry, dummy player, and additivity.
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Shapley’s Axioms: (1) Efficiency

• The Shapley value sh(G) is an imputation, i.e., a tuple of
payoffs sh(G) = (sh1(G), . . . , shn(G)).
• It defines how the payoff of the grand coalition is

distributed (standard assumption: superadditive games)
• The efficiency axiom says that no utility is wasted: all utility

is distributed:
ν(N) =

∑
i∈N

shi(G).
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Shapley’s Axioms: (2) Symmetry

• The symmetry axiom says that agents which make the
same contribution should get the same payoff.
• Let δi(S) be the amount that i adds by joining S ⊆ N:

δi(S) = ν(S ∪ {i})− ν(S)

. . . the marginal contribution of i to S.
• Then i and j are interchangeable if δi(C) = δj(C) for every

C ⊆ N \ {i , j}.
• The symmetry axiom: if i and j are interchangeable then

shi(G) = shj(G).
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Shapley’s Axioms: (3) Dummy Player

• The dummy player axiom says that agents which make no
contribution should get nothing.
• Formally, i ∈ N is a dummy if δi(S) = 0 for every

S ⊆ N \ {i}.
• The dummy player axiom: if i is a dummy player then
ϕi = 0.
• (Note: if i is a dummy then ν({i}) = 0 since δi(∅) = 0).
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Shapley’s Axioms: (4) Additivity

• This one is a bit technical! It basically says that if you
combine two games, then the value a player gets should
be the sum of the values in the individual games.
You can’t gain or lose by playing more than once.
• Formally, where G1 = (N, ν1) and G2 = (N, ν2) are games,

define game G1 + G2 = (N, ν1 + ν2) with:

ν1 + ν2(C) = ν1(C) + ν2(C).

• Then addititivy says:

shi(G1 + G2) = shi(G1) + shi(G2).
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Shapley Defined

The Shapley value for i , denoted shi , is:

shi =
1
n!

∑
r∈R

δi(Si(r))

where R is the set of all orderings of N and Si(r) is the set of
agents preceding i in ordering r .

Theorem (Shapley)
The Shapley value satisfies axioms (1)–(4) and, moreover, it is
the only solution to these axioms.
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Computational Issues in Coalitional Games

• It is important for an agent to know (eg) whether the core
of a coalition is non-empty . . .
so, how hard is it to decide this?
• Problem: naive, obvious representation of coalitional game

is exponential in the size of N!
• Now such a representation is:

utterly infeasible in practice; and
so large that it renders comparisons to this input size
meaningless: stating that we have an algorithm that runs in
(say) time linear in the size of such a representation means
it runs in time exponential in the size of N!
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How to Represent Characteristic Functions?

Two approaches to this problem:

• try to find a complete representation that is succinct in
“most” cases
• try to find a representation that is not complete but is

always succinct
• A common approach:

interpret characteristic function over combinatorial
structure.
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What are Weighted Voting Games?

• A simple coalitional game, where value of any coalition is
either 0 (“losing”) or 1 (“winning”).
• A type of yes/no voting system, in which a proposal (e.g.,

new law) is pitted against the status quo.
• For each agent i ∈ N, assign a weight wi , and define an

overall quota, q.

ν(C) =

{
1 if

∑
i∈C wi ≥ q

0 otherwise.
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Simple Majority Voting

• Weighted voting games are widely used in real world: for
example simple majority voting is a special case.
• Simple majority voting is the political decision making

system in, e.g., the UK and many other countries.
• Players are the people voting, e.g., the politicians deciding

whether to pass a new law.
Each player has weight wi = 1 and for the threshold we
have

q = dn + 1
2
e.

where n is the number of players (the size of the
electorate).
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Complexity of Weighted Voting Games

• Shapley value:
#P-complete to compute, and “cannot be approximated”
(Deng & Papadimitriou, 94) proved #P-completeness, and
the other result follows from their construction.
• Core non-emptiness:

in polynomial time.
Core is non-empty iff there is an agent present in every
winning coalition.
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A Complete Representation

• Weighted voting games are not a complete representation
for simple games:
Some simple games cannot be represented using
weighted voting games.
• k -weighted voting games are a complete representation for

simple games, based on weighted voting games.
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k -Weighted Voting Games

A k -weighted voting game S is a tuple

S = 〈N,w1, . . . ,wn,q〉

where

• N is the set of voters
• wi ∈ Rk is a vector of k real weights for voter i ∈ N, and
• q ∈ Rk is a vector of k real quotas.
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k -Weighted Voting Games

• The coalitional characteristic function ν(C) is defined by

ν(C) =

{
1 if

∑
i∈C wi ≥ q

0 otherwise.

i.e., C wins in S if it wins in each of the component
weighted voting games.
• So weighted voting games are a conjunction, and we often

write S = W1 ∧ · · · ∧Wk to denote the k -weighted voting
game composed from weighted voting games W1, . . . ,Wk .
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The EU: A 3-Weighted Voting Games

Voting in the EU is a 3-weighted voting game W1 ∧W2 ∧W3,
where the three weighted voting games corresponding to votes,
countries, and population.

Each member state is a player.

The players are: {Germany, United Kingdom, France, Italy,
Spain, Poland, Romania, The Netherlands, Greece, Czech
Republic, Belgium, Hungary, Portugal, Sweden, Bu lgaria,
Austria, Slovak Republic, Denmark, Finland, Ireland, Lithuania,
Latvia, Slovenia, Estonia, Cyprus, Louxembourg, Malta}.
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The EU: A 3-Weighted Voting Games

Voting in the EU is a 3-weighted voting game W1 ∧W2 ∧W3,
where the three weighted voting games corresponding to votes,
countries, and population:

v1 = {255; 29, 29, 29, 29, 27, 27, 14, 13, 12, 12, 12, 12, 12, 10, 10, 10, 7, 7, 7, 7, 7,

4, 4, 4, 4, 4, 3}
v2 = {14; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
v3 = {620; 170, 123, 122, 120, 82, 80, 47, 33, 22, 21, 21, 21, 21, 18, 17, 17, 11,

11, 11, 8, 8, 5, 4, 3, 2, 1, 1}
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Dimensionality

• k -weighted voting games are a complete representation for
simple games: but how large does k have to be?
The smallest number of components required is the
dimension of the game.
• There exist simple coalitional games in which the smallest

equivalent k weighted voting game is of dimension
Ω(2n−1).
Example: winning coalitions are of odd size!
• But: every simple coalitional game has an equivalent k

weighted voting game of dimension O(|2N |).
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Dimensionality Problems

• We typically want the smallest representation possible.
• It is co-NP-complete to check whether two k -weighted

voting games are equivalent, even if all weights are 0 or 1.
• It is NP-complete to check whether a given component of a

k -weighted voting game is relevant.
• It is NP-complete to check whether a k -weighted voting

game is minimal.
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The Induced Subgraph Representation

• Represent ν as an undirected graph on N, with integer
weights wi,j between nodes i , j ∈ N.
• Value of coalition C then:

ν(C) =
∑
{i,j}⊆N

wi,j

i.e., the value of a coalition C ⊆ N is the weight of the
subgraph induced by C.
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Complexity of Induced Subgraphs

(Deng & Papadimitriou, 94)
• Computing Shapley: in polynomial time.

An agent gets half the income from its edges.

ϕi =
1
2

∑
j 6=i

wi,j

• However, determining emptiness of the core is
NP-complete
• Checking whether a specific distribution is in the core is

co-NP-complete
This representation is not complete.
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Marginal Contribution Nets

(Ieong & Shoham, 2005)
• Characteristic function represented as rules:

pattern −→ value.

• Pattern is conjunction of agents, a rule applies to a group
of agents C if C is a superset of the agents in the pattern.
Value of a coalition is then sum over the values of all the
rules that apply to the coalition.
Example:

a ∧ b −→ 5
b −→ 2

We have: ν({a}) = 0, ν({b}) = 2, and ν({a,b}) = 7.
• We can also allow negations in rules (agent not present).
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Marginal Contribution Nets

• Shapley value: in polynomial time.
Consider case where rules only contain positive literals, let
ρ be set of such rules representing a game. Then:

ϕi =
∑

r∈ρ:i in lhs of r
ϕr

i

where
ϕχ−→x

i =
x
|χ|

• Checking whether distribution is in the core is
co-NP-complete
• Checking whether the core is non-empty is co-NP-hard.

A complete representation, but not necessarily succinct.

131 / 145



Qualitative Coalitional Games

• Often not interested in utilities, but in goals – either the
goal is satisfied or not
• QCGs are a type of coalitional game in which each agent

has a set of goals, and wants one of them to be achieved
(doesn’t care which)
Agents cooperate in QCGs to achieve mutually satisfying
sets of goals.
Coalitions have sets of choices representing the different
ways they could cooperate
Each choice is a set of goals.
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QCGs

A Qualitative Coalitional Game (QCG) is a structure:

Γ = 〈G,N,G1, . . . ,Gn,V 〉

where

• G = {g1, . . . ,gm} is a set of possible goals;
• N = {1, . . . ,n} is a set of agents;
• Gi ⊆ G is a set of goals for each agent i ∈ N, the intended

interpretation being that any of Gi would satisfy i ;
• V : 2N → 22G

is a characteristic function, which for every
coalition C ⊆ N determines a set V (C) of choices, the
intended interpretation being that if G′ ∈ V (C), then one of
the choices available to coalition C is to bring about all the
goals in G′ simultaneously.
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Feasible/Satisfying Goal Sets

• Goal set G′ ⊆ G satisfies an agent i if Gi ∩G′ 6= ∅.
Goal set G′ ⊆ G satisfies a coalition C ⊆ N if

∀i ∈ C,Gi ∩G′ 6= ∅

• A goal set G′ is feasible for C if G′ ∈ V (C).
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Representing QCGs

• So, how do we represent the function V : 2N → 22G
?

• We use a formula ΨV of propositional logic over
propositional variables N,G, such that:

Ψ[C,G′] = > if and only if G′ ∈ V (C)

• “Often” permits succinct representations of V .
• Note that given ΨV , C, G′, determining whether G′ ∈ V (C)

can be done in time polynomial in size of C,G′,ΨV .
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Coalitional Resource Games (CRGs)

• Problem:
where does characteristic function come from?

• One answer provided by Coalitional Resource Games
(CRGs).
• Key ideas:

achieving a goal requires expenditure of resources;
each agent endowed with a profile of resources;
coalitions form to pool resource so as to achieve mutually
satisfactory set of goals.
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CRGs

A coalitional resource game Γ is an (n + 5)-tuple:

Γ = 〈N,G,R,G1, . . . ,Gn,en, req〉

where:

• N = {a1, . . . ,an} is a set of agents;
• G = {g1, . . . ,gm} is a set of possible goals;
• R = {r1, . . . , rt} is a set of resources;
• for each i ∈ N, Gi ⊆ G is a set of goals, as in QCGs;
• en : N × R → N is an endowment function,
• req : G × R → N is a requirement function.
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Further reading
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Further Reading
General Game Theory References

• Game Theory by Michael Maschler, Eilon Solan, and
Shmuel Zamir. Cambridge UP, 2013.
(IMHO, the best contemporary reference for game theory:
rigorous but very readable.)
• A Course in Game Theory by Martin J. Osborne and Ariel

Rubinstein. MIT Press, 1994.
(Until Maschler et al came along, this was my favourite.
Available free (legally!) from: http://tinyurl.com/gtbook)
• Game Theory – A Very Short Introduction by Ken Binmore.

Oxford UP, 2007.
(A useful companion for bedtime reading. Full of razor sharp
opinions and insight from a master of the art.)

139 / 145



Further Reading
Game Theory and Computer Science

• Multiagent Systems: Algorithmic, Game-Theoretic, and
Logical Foundations, by Yoav Shoham and Kevin
Leyton-Brown. Cambridge UP, 2009.
(A rigorous introduction to multi-agent systems as seen from a
game theoretic perspective. Available free (legally!) from
http://www.masfoundations.org/mas.pdf)
• Computational Aspects of Cooperative Game Theory by

Georgios Chalkiadakis, Edith Elkind, and Michael
Wooldridge. Morgan-Claypool, 2011.
(As the name suggests, studies cooperative game theory from
the point of view of computer science.)
• Algorithmic Game Theory. V. Vazirani, N. Nisan, T.

Roughgarden, E. Tardos (eds). Cambridge UP, 2007.
(Theoretical computer science take on GT/CS.)
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Part VI

History of game theory
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History of Game Theory
Phase One: 1928–54

• Originated in current form in early part of 20th century.
• Original focus: parlor games such as poker, chess (e.g.,

Zermelo on game of chess)
• First milestone: the minimax theorem proved in 1928 by

Hungarian polymath John von Neumann (1903–57),
leading to. . .
• Publication in 1944 of Theory of Games and Economic

Behaviour by John von Neumann and Oskar Morgenstern
(1902–77).
• Initial scope of game theoretic techniques very limited

(typically “2 person zero sum games”)
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History of Game Theory
Phase Two: 1954–1980

• Scope of game theory hugely extended in 1950s with work
of John Forbes Nash, Jr (1928–), and the concept of Nash
equilibrium (NE)
(NE remains to this day the chief analytical concept in
game theory)
• A flurry of activity in 1950s, with other key results by

Selten, Aumann, Shapley, Harsanyi and others
• But activity began to peter out as limitations to applicability

of NE make themselves felt.
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History of Game Theory
Phase Three: 1980–present

• In late 1970s/early 1980s, focus shifted to how societies
converge on strategies.
• John Maynard Smith (1920–2004) and George Price

(1922–75) laid foundations of evolutionary game theory,
which refines NE and shows how societies can converge
on equilibria through purely evolutionary processes
• Explain many biological questions, but also turn out to

have direct relevance to economics.
• Robert Axelrod (1943–) hosts Prisoner’s Dilemma

competition, to much acclaim.
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History of Game Theory
Phase Three: 1990–present

• Auction design raises much interest in game theoretic
mechanism design
• Links between computer science & game theory: Christos

Papadimitriou et al
• Four Nobel prizes for game theory:

1994: John Harsanyi, John Forbes Nash, Reinhard Selten
2005: Robert Aumann, Thomas Schelling
2007: Leonid Hurwicz, Eric Maskin, Roger Myerson
2012: Al Roth, Lloyd Shapley
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